Ethanol is a fast channel inhibitor of P2X4 receptors.

نویسندگان

  • Olga Ostrovskaya
  • Liana Asatryan
  • Letisha Wyatt
  • Maya Popova
  • Kaixun Li
  • Robert W Peoples
  • Ronald L Alkana
  • Daryl L Davies
چکیده

P2X receptors (P2XRs) are ion channels gated by synaptically released ATP. The P2X4 is the most abundant P2XR subtype expressed in the central nervous system and to date is the most ethanol-sensitive. In addition, genomic findings suggest that P2X4Rs may play a role in alcohol intake/preference. However, little is known regarding how ethanol causes the inhibition of ATP-gated currents in P2X4Rs. We begin to address this issue by investigating the effects of ethanol in wild-type and mutant D331A and M336A P2X4Rs expressed in human embryonic kidney (HEK) 293 cells using whole-cell patch-clamp methods. The results suggest that residues D331 and M336 play a role in P2X4R gating and ethanol inhibits channel functioning via a mechanism different from that in other P2XRs. Key findings from the study include: 1) ethanol inhibits ATP-gated currents in a rapid manner; 2) ethanol inhibition of ATP-gated currents does not depend on voltage and ATP concentration; 3) residues 331 and 336 slow P2X4 current deactivation and regulate the inhibitory effects of ethanol; and 4) ethanol effects are similar in HEK293 cells transfected with P2X4Rs and cultured rat hippocampal neurons transduced with P2X4Rs using a recombinant lentiviral system. Overall, these findings provide key information regarding the mechanism of ethanol action on ATP-gated currents in P2X4Rs and provide new insights into the biophysical properties of P2X4Rs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor.

Ionotropic ATP receptors are widely expressed in mammalian CNS. Despite extensive functional characterization of neuronal homomeric P2X receptors in heterologous expression systems, the subunit composition of native central P2X ATP-gated channels remains to be elucidated. P2X4 and P2X6 are major central subunits with highly overlapping mRNA distribution at both regional and cellular levels. Whe...

متن کامل

P2X purinergic receptor channel expression and function in bovine aortic endothelium.

We examined bovine aortic endothelial cells (BAECs) for the functional expression of P2X receptors, the ATP-gated cation channels. We identified the P2X subtypes present in BAECs using RT-PCR. mRNA was present for only three of seven family members: P2X4, P2X5, and P2X7. We then characterized agonist-activated currents in whole cell and outside-out patch recordings using 2-methyl-thio-ATP (MeSA...

متن کامل

Allosteric modulation of ligand gated ion channels by ivermectin.

Ivermectin acts as a positive allosteric regulator of several ligand-gated channels including the glutamate-gated chloride channel (GluCl), gamma aminobutyric acid type-A receptor, glycine receptor, neuronal alpha7-nicotinic receptor and purinergic P2X4 receptor. In most of the ivermectin-sensitive channels, the effects of ivermectin include the potentiation of agonist-induced currents at low c...

متن کامل

Inherent Dynamics of Head Domain Correlates with ATP-Recognition of P2X4 Receptors: Insights Gained from Molecular Simulations

P2X receptors are ATP-gated ion channels involved in many physiological functions, and determination of ATP-recognition (AR) of P2X receptors will promote the development of new therapeutic agents for pain, inflammation, bladder dysfunction and osteoporosis. Recent crystal structures of the zebrafish P2X4 (zfP2X4) receptor reveal a large ATP-binding pocket (ABP) located at the subunit interface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 337 1  شماره 

صفحات  -

تاریخ انتشار 2011